Send Message
QINGDAO ENNENG MOTOR CO.,LTD.
products
products
Home > products > Three Phase Permanent Magnet Motor > IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise

IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise

Product Details

Place of Origin: China

Brand Name: ENNENG

Certification: CE,UL

Model Number: PMM

Payment & Shipping Terms

Minimum Order Quantity: 1 set

Price: USD 500-5000/set

Packaging Details: seaworthy packing

Delivery Time: 15-120 days

Payment Terms: L/C, T/T

Supply Ability: 20000 sets/year

Get Best Price
Highlight:

IP55 Three Phase Permanent Magnet Motor

,

IP68 Three Phase Permanent Magnet Motor

,

IP54 High Torque Permanent Magnet Motor

Name:
Direct Drive Permanent Magnet Motor
Current:
AC
Material:
Rare Earth NdFeB
Type:
Interior PMSM
Voltage:
380v, 660v, 1140v, 3300v, 6kv, 10kv
Power Range:
5.5-3000kw
Installation:
IMB3 IMB5 IMB35
Advantages:
Simple Structure, Small Size
Cooling:
IC411, IC416
Protection Grade:
IP54 IP55 IP68
Name:
Direct Drive Permanent Magnet Motor
Current:
AC
Material:
Rare Earth NdFeB
Type:
Interior PMSM
Voltage:
380v, 660v, 1140v, 3300v, 6kv, 10kv
Power Range:
5.5-3000kw
Installation:
IMB3 IMB5 IMB35
Advantages:
Simple Structure, Small Size
Cooling:
IC411, IC416
Protection Grade:
IP54 IP55 IP68
IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise

High Torque Low Noise Direct Drive Three Phase Permanent Magnet Motor

IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 0
 
What Is The Permanent Magnet Synchronous Motor?
 
The PERMANENT MAGNET SYNCHRONOUS MOTOR is mainly composed of the stator, rotor, chassis, front-rear cover, bearings, etc. The structure of the stator is basically the same as that of ordinary asynchronous motors, and the main difference between the permanent magnet synchronous motor and other kinds of motors is its rotor.
 
The permanent magnet material with pre-magnetized (magnetic charged) magnetic on the surface or inside the permanent magnet of the motor, provides the necessary air gap magnetic field for the motor. This rotor structure can effectively reduce the motor volume, reduce loss and improve efficiency.

The working process of pm motors is as follows:
① Establishment of the main magnetic field of the pm motors:

The excitation winding is supplied with a DC excitation current to establish an excitation magnetic field between polarities, that is, the main magnetic field is established.

② Current-carrying conductor of pm motors:

The three-phase symmetrical armature winding acts as a power winding and becomes the carrier of induced potential or induced current.

Cutting motion of pm motors:

The prime mover drags the rotor to rotate (input mechanical energy to the motor), and the excitation magnetic field between polarities rotates with the shaft and cuts the stator winter phase winding in sequence (equivalent to the conductor of the winding reverse cutting the excitation field )

④ Generation of the alternating potential of pm motors:

Due to the relative cutting motion between the armature winding and the main magnetic field, a three-phase symmetrical alternating potential with periodic changes in size and direction will be induced in the armature winding. AC power can be provided through the lead wire.

⑤ Alternation and symmetry of pm motors:

Due to the alternating polarity of the rotating magnetic field, the polarity of the induced potential is alternated, and the three-phase symmetry of the induced potential is guaranteed due to the symmetry of the armature winding.

 

The variable speed permanent magnet synchronous motor and the permanent magnet brushless DC motor are basically the same in structure, with multi-phase windings on the stator and permanent magnets on the rotor. The advantages of the two are similar. The main difference between them is that the permanent magnet brushless DC motor realizes synchronization according to the rotor position information, while the speed-regulating permanent magnet synchronous motor needs an electronic control system to realize synchronization and speed regulation.

 

 

Detailed pictures
IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 1
 
Permanent magnet AC (PMAC) motors have a wide range of applications including:
 
Industrial Machinery: PMAC motors are used in a variety of industrial machinery applications, such as pumps, compressors, fans, and machine tools. They offer high efficiency, high power density, and precise control, making them ideal for these applications.
 
Robotics: PMAC motors are used in robotics and automation applications, where they offer high torque density, precise control, and high efficiency. They are often used in robotic arms, grippers, and other motion control systems.
 
HVAC Systems: PMAC motors are used in heating, ventilation, and air conditioning (HVAC) systems, where they offer high efficiency, precise control, and low noise levels. They are often used in fans and pumps in these systems.
 
Renewable Energy Systems: PMAC motors are used in renewable energy systems, such as wind turbines and solar trackers, where they offer high efficiency, high power density, and precise control. They are often used in the generators and tracking systems in these systems.
 
Medical Equipment: PMAC motors are used in medical equipment, such as MRI machines, where they offer high torque density, precise control, and low noise levels. They are often used in the motors that drive the moving parts in these machines.


IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 2


Working of Permanent Magnet Synchronous Motor:

The working of the permanent magnet synchronous motor is very simple, fast, and effective when compared to conventional motors. The working of PMSM depends on the rotating magnetic field of the stator and the constant magnetic field of the rotor. The permanent magnets are used as the rotor to create constant magnetic flux and operate and lock at synchronous speed. These types of motors are similar to brushless DC motors.

The phasor groups are formed by joining the windings of the stator with one another. These phasor groups are joined together to form different connections like a star, Delta, and double and single phases. To reduce harmonic voltages, the windings should be wound shortly with each other.

When the 3-phase AC supply is given to the stator, it creates a rotating magnetic field and the constant magnetic field is induced due to the permanent magnet of the rotor. This rotor operates in synchronism with the synchronous speed. The whole working of the PMSM depends on the air gap between the stator and rotor with no load.

If the air gap is large, then the windage losses of the motor will be reduced. The field poles created by the permanent magnet are salient. The permanent magnet synchronous motors are not self-starting motors. So, it is necessary to control the variable frequency of the stator electronically.

 

Structure of the IPM (interior permanent magnet) motor

 

A conventional SPM (surface permanent magnet) motor has a structure in which a permanent magnet is attached to the rotor surface. It only uses magnetic torque from a magnet. On the other hand, the IPM motor uses reluctance through magnetic resistance in addition to magnetic torque by embedding a permanent magnet in the rotor itself.

 

SPM vs IPM Motor Rotor Structure

 

IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 3

IPM (Interior Permanent Magnet) Motor Features

 

High torque and high efficiency
High torque and high output are achieved by using reluctance torque in addition to magnetic torque.

 

Energy-saving operation
It consumes up to 30% less power compared to conventional SPM motors.

 

High-speed rotation
It can respond to high-speed motor rotation by controlling the two types of torque using vector control.

 

Safety
Since the permanent magnet is embedded, mechanical safety is improved as, unlike in an SPM, the magnet will not detach due to centrifugal force.

 

Vector Control Features

While a conventional system (120-degree conduction system) has the current impressed in the motor as a square wave, a vector control impresses voltage which turns into a sine wave towards the rotor's position (angle of the magnet), so it becomes possible to control the motor current.

 

 IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 4

IP54 IP55 IP68 Three Phase Permanent Magnet Motor High Torque Low Noise 5

 

The permanent magnet synchronous motor has the following characteristics:

 

1. Rated efficiency is 2% to 5% higher than normal asynchronous motors;

 

2. The efficiency rises rapidly with the increase of the load. When the load changes within the range of 25% to 120%, it maintains high efficiency. The high-efficiency operating range is much higher than that of ordinary asynchronous motors. Light-load, variable-load, and full-load all have significant energy-saving effects;

 

3. Power factors up to 0.95 and above, no reactive compensation required;

 

4. The power factor is greatly improved. Compared with asynchronous motors, the running current is reduced by more than 10%. Due to the decrease in operating current and system losses, energy-saving effects of about 1% can be achieved.

 

5. Low-temperature rise, high power density: 20K lower than three-phase asynchronous motor temperature rise, the design temperature rise is the same and can be made into a smaller volume, saving more effective materials;

 

6. High starting torque and high overload capacity: according to requirements, it can be designed with high starting torque (3-5 times) and high overload capacity;

 

7. The variable frequency speed control system is used, which is better in dynamic response and better than that of asynchronous motors.

 

8. The installation dimensions are the same as the asynchronous motors currently widely used, and the design and selection are very convenient.

 

9. Due to the increase in power factor, the visual power of the power supply system transformer is greatly reduced, which improves the power supply capacity of the transformer, and can also greatly reduce the cost of the system cable (new project);

 

10. When the new project is built, all the drive systems use permanent magnetic synchronous motors, the project investment is basically the same as the use of asynchronous motors, and the project can continue to obtain energy-saving benefits after the project is put into operation;

 

In the general industrial sector, the replacement of low-voltage(380/660/1140V) high-efficiency asynchronous motors, the system saves 5% to 30% energy, and the high-voltage(6kV/10kV) high-efficiency asynchronous motors, system saves 2% to10%.

 

Why are permanent magnet motors more efficient?

 

The Permanent magnet synchronous motor is mainly composed of the stator, rotor, and housing components. Like ordinary AC motors, the stator core is a laminated structure to reduce iron loss due to eddy current and hysteresis effects during motor operation; the windings are also usually three-phase symmetrical structures, but the parameter selection is quite different.

 

The rotor part has various forms, including permanent magnet rotors with starting squirrel cages, and built-in or surface-mounted pure permanent magnet rotors. The rotor core can be made into a solid structure or laminated. The rotor is equipped with permanent magnet material, which is commonly called magnet steel.

 

Under the normal operation of the permanent magnet motor, the rotor, and the stator magnetic field are in a synchronous state, there is no induced current in the rotor part, no rotor copper loss, hysteresis, and eddy current loss, and there is no need to consider the problem of rotor loss and heat generation.

 

Generally, the permanent magnet motor is powered by a special frequency converter and naturally has a soft start function.

 

In addition, the permanent magnet motor is a synchronous motor, which has the characteristics of adjusting the power factor of the synchronous motor through the strength of the excitation, so the power factor can be designed to a specified value.

 

From the perspective of starting, due to the fact that the permanent magnet motor is started by the variable frequency power supply or the supporting frequency converter, the starting process of the permanent magnet motor is easy to realize; similar to the starting of the variable frequency motor, it avoids the starting defects of the ordinary cage-type asynchronous motor.

 

In short, the efficiency and power factor of permanent magnet motors can reach very high, and the structure is very simple.